Expression of ZnT and ZIP zinc transporters in the human RPE and their regulation by neurotrophic factors.
نویسندگان
چکیده
PURPOSE Zinc is an essential cofactor for normal cell function. Altered expression and function of zinc transporters may contribute to the pathogenesis of neurodegenerative disorders including macular degeneration. The expression and regulation of zinc transporters in the RPE and the toxicity of zinc to these cells were examined. METHODS Zinc transporters were identified in a human RPE cell line, ARPE19, using a 28K human array, and their expression was confirmed by PCR, immunocytochemistry, and Western blot analysis in primary human RPE cultures and ARPE19. Zinc toxicity to ARPE19 was determined using monotetrazolium, propidium iodide, and TUNEL assays, and Zn(2+) uptake was visualized with Zinquin ethyl ester. The effect of various growth factors on zinc transporter expression also was examined. RESULTS Transcripts for 20 of 23 zinc transporters are expressed in fetal human RPE, 16 of 23 in adult human RPE, and 21 of 23 in ARPE19. Zn transporter proteins were also detected in ARPE19. ZnT5 expression was not observed, whereas ZnT6, ZIP1, and ZIP13 were the most abundantly expressed in all RPE samples. The addition of low concentrations of Zn(2+) to cultures resulted in a dose-dependent increase in intracellular Zn(2+) content in ARPE19, and >30 nM Zn(2+) induced necrosis with an LC(50) of 117.4 nM. Brain-derived neurotrophic factor, ciliary neurotrophic factor, glial-derived neurotrophic factor (GDNF), and pigment epithelial-derived neurotrophic factor (PEDF) increased ZIP2 expression, GDNF and PEDF increased ZnT2 expression, and PEDF increased ZnT3 and ZnT8 expression. These neurotrophic factors also promoted Zn(2+) uptake in the RPE. CONCLUSIONS The array of zinc transporters expressed by the RPE may play a key role in zinc homeostasis in the retina and in ocular health and diseases.
منابع مشابه
The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism.
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-,...
متن کاملTitle The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular si...
متن کاملThe Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective.
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular si...
متن کامل[Overview of and update on the physiological functions of mammalian zinc transporters].
In recent years, a number of mammalian zinc transporters have been molecularly characterized. This has brought about major advances in our understanding of the tight regulation of cellular zinc homeostasis and the pivotal roles zinc transporters play in a variety of biological events. Mammalian zinc transporters are classified into two families: the ZRT, IRT-like protein (ZIP) family and the Zn...
متن کاملNrf2-ARE-Dependent Alterations in Zinc Transporter mRNA Expression in HepG2 Cells
Zinc transporters are solute carrier family members. To date, 10 zinc transporters (ZnTs) and 14 Zrt-, Irt-like proteins (ZIPs) have been identified. ZnTs control intracellular zinc levels by effluxing zinc from the cytoplasm into the extracellular fluid, intracellular vesicles, and organelles; ZIPs also contribute to control intracellular zinc levels with influxing zinc into the cytoplasm. Rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 49 3 شماره
صفحات -
تاریخ انتشار 2008